Растения – уникальные живые существа нашей планеты. Они сами синтезируют в своих клетках необходимые им продукты питания из неорганических веществ. Одним из основных биохимических процессов в клетках растений является фотосинтез.
Он позволяет получать необходимые для своей жизнедеятельности вещества, используя энергию света. В отличие от животных растения являются своеобразными фабриками по производству органики, используя для этого неисчерпаемый источник энергии – солнечный свет. Что такое фотосинтез в биологии? Что происходит в листьях растений при фотосинтезе? Об этом и многом другом вы прочитаете в нашей статье.
Где происходит фотосинтез у растений
Процесс фотосинтеза происходит внутри клеток растений. Растительная клетка имеет сложное строение и состоит из множества частей – органоидов (органелл). Фотосинтез происходит в следующих органоидах (органеллах) клетки:
- Хлоропластах;
- Вакуолях;
- Клеточных мембранах;
- Клеточном ядре.
Фотосинтез проходит в слое мезофилла. Это основная внутренняя ткань растения, в которой расположены растительные клетки, содержащие хлоропласты. Хлоропласты – мельчайшие пластиды, содержащие специальное вещество – хлорофилл, которое отвечает за фотосинтез растений.
Хлорофилл поглощает световую энергию только в определенном диапазоне. Для успешного прохождения процесса фотосинтеза важны красная и синяя составляющая солнечного спектра. Зеленые волны не поглощаются, а отражаются, поэтому лист растения кажется окрашенным в зеленый цвет.
Помимо хлоропластов в составе клетки имеются другие важные для фотосинтеза части. Вакуоль накапливает воду, которая необходима для прохождения химических реакций фотосинтеза. Клеточная мембрана и стенки клетки обеспечивают необходимый для реакции газообмен.
Все эти вещества должны свободно проникать в ткань листа и проходить сквозь клеточные мембраны. И, наконец, важнейшей частью растительной клетки является ее ядро. В его состав входят генетические марки, которые обеспечивают правильное функционирование всей клеточной структуры.
Что такое фотосинтез и как он проходит
Фотосинтез – химический процесс создания в клетках растений органического вещества из неорганических под воздействием света. Условия необходимые для процесса протекания фотосинтеза — это наличие исходных веществ:
- Углекислого газа — CO2;
- Воды — H2O .
В результате фотосинтеза образуются следующие вещества:
- Глюкоза — C6H12O6;
- Кислород — O2.
Химическую формулу процесса фотосинтеза можно представить следующим образом:
6CO2 + 6H2O + Qсвета = C6H12O6 + 6O2
Углекислый газ в избытке содержится в атмосфере. Он поступает в клетки растения через многочисленные нижние отверстия листа – устьица. Вода необходима для жизнедеятельности растения и содержится в почве.
Из исходных неорганических веществ под воздействием солнечного света синтезируется первичный продукт фотосинтеза глюкоза, а остатки неиспользованного кислорода выделяются в атмосферу.
Зачем растениям нужна глюкоза? Это соединение играет в их жизни важнейшую роль. Вот лишь некоторые процессы, происходящие в тканях растения с участием этого органического вещества:
- Дыхание – процесс расщепления глюкозы на воду и углекислый газ с высвобождением большого количества тепловой энергии;
- Создание запасов органических веществ – создание из глюкозы более стойкого к внешним воздействиям вещества – крахмала, который может храниться в клетках растения длительное время и расходоваться при необходимости;
- Синтез белков, жиров и углеводов – глюкоза является одним из исходных материалов для производства этих веществ, которые необходимы растению для его роста и обеспечения других важнейших процессов в его жизнедеятельности.
Таким образом, основной продукт фотосинтеза- глюкоза является незаменимым источником энергии для жизни растения и материалом для строительства его организма.
Этапы процесса в клетках растений
Фотосинтез в клетках растений осуществляется в 3 этапа:
- Фотофизический или первичный этап;
- Фотохимический или световой этап;
- Ферментативный или темновой этап.
Сущность первичного этапа фотосинтеза заключается в накоплении в хлоропластах растительной клетки световой энергии и передаче ее в особый реакционный центр для обеспечения дальнейших фотохимических процессов.
В процессе фотосинтеза органоиды растения хлоропласты, а точнее молекулы хлорофилла поглощают кванты света и переходят в возбужденное состояние. Но они не остаются в этом состоянии и не хранят в себе световую энергию. Эта энергия передается в молекулы-ловушки, из которой они попадают в реакционный центр.
Около 200-400 молекул хлорофилла имеют энергетическую связь с одной молекулой-ловушкой. В накоплении и передаче световой энергии связи между молекулами играют решающую роль. Продолжением фотофизического является фотохимический этап фотосинтеза, в котором используется уже накопленная световая энергия. Этот этап называется световым, хотя название это неточное.
На самом деле он может проходить и при отсутствии света, используя накопленную ранее световую энергию. Но в процессе фотосинтеза накопление световой энергии и использование ее в фотохимических реакциях происходит одновременно, поэтому фотофизический и фотохимический этап фотосинтеза принято считать его световой фазой.
Этот процесс проходит с использованием накопленной световой энергии и считается частью световой фазы фотосинтеза. 3 этап фотосинтеза – ферментативный. Он может проходить без участия света, так как исходные материалы для его проведения уже получены после прохождения световых этапов.
На 3 этапе из углекислого газа, поступившего в растительную клетку извне, с участием продуктов световой фазы в результате фотосинтеза продуцируется глюкоза. Кислород, полученный при расщеплении воды, выделяется в атмосферу.
Световая фаза
Световая фаза фотосинтеза начинается со сбора световой энергии в светособирающих комплексах молекул хлорофилла и передачи ее в реакционные центры этих комплексов. Молекулы хлорофилла расположены в клетках растений не хаотически.
Они соединяются друг с другом особыми энергетическими связями. Поглощая квант света, молекула хлорофилла получает частицу энергии, которую она передает по энергетическим связям к молекуле, называемой молекулой-ловушкой или реакционным центром.
Каждая молекула хлорофилла может получить фотон света достаточно редко. Но чтобы процессы в растительной клетке не прерывались, фотоны собираются с некоторого участка листа в один реакционный центр.
В него световая энергия будет поступать намного чаще, чем из отдельных молекул хлорофилла. И химические реакции здесь будут идти практически непрерывно. Получив световую энергию, реакционные центры проводят фотолиз воды, которая в достаточном количестве находится в тканях клетки.
Формула фотолиза воды может быть представлена следующим образом;
2Н20 + Qсвета -> 4Н+ + 4е— + 02
Вода под воздействием световой энергии распадается на следующие составляющие:
- Протоны водорода (Н+);
- Электроны водорода (е—);
- Кислород (О2).
Но это еще не конечные продукты световой фазы фотосинтеза. Протоны идут на восстановление НАДФ до НАДФН. НАДФ (никотинамидадениндинуклеотидфосфат) – соединение, присутствующее во всех растительных и животных клетках и принимающее участие в фотосинтетических процессах.
Это фермент, играющий роль катализатора. Он принимает на себя протоны водорода, превращаясь в НАДФН, а затем отдает их в процессе дальнейших химических реакций. Восстановленный НАДФН и является источником водорода, который используется на темновой стадии фотосинтеза для получения глюкозы из углекислого газа.
Она является источником энергии в различных химических реакциях. В них молекула АТФ переходит в АДФ (аденозиндифосфат), выделяя огромное количество энергии. АТФ – является один из конечных продуктов световой фазы фотосинтеза у растений – энергетическая составляющая, необходимая для прохождения химических реакций темновой фазы.
При фотолизе воды образуется кислород. Так как он не принимает участия в дальнейших химических процессах, растение выделяет его в окружающую среду. Итак, конечными продуктами световой фазы фотосинтеза являются:
- НАДФН;
- АТФ;
- Молекулярный кислород.
Световую фазу фотосинтеза можно представить следующей формулой:
Н20 + Qсвета -> НАДФН + АТФ + 02
Темновая фаза
Темновая или ферментативная фаза – процесс получения органической глюкозы из углекислого газа. Для ее прохождения свет уже не требуется, если конечные продукты световой фазы имеются в наличии.
Путь С3 называют циклом Кальвина. Он присущ большинству растений на нашей планете. Это сложнейший процесс, проходящий в несколько этапов. Основными этапами цикла Кальвина являются:
- Карбоксилирование;
- Восстановление;
- Регенерация.
В цикле Кальвина осуществляется множество химических реакций, в результате которых синтезируется конечный продукт процесса — органическое соединение глюкоза. Основным отличием этого пути фотосинтеза является первый этап карбоксилирования, когда углекислый газ под воздействием ферментов образует 3-углеродное соединение – фосфоглицериновую кислоту. Поэтому этот путь фотосинтеза назван С3.
Этот путь является модификацией цикла Кальвина и в биологии называется циклом Хэтча-Слэка. Здесь в конечном итоге также образуется глюкоза. Но в этом цикле проходят химические реакции, отличные от С3— пути и используются другие ферменты. Этапы прохождения цикла Хэтча-Слэка:
- Акцептация;
- Декарбоксилирование;
- Цикл Кальвина.
После захвата углекислого газа на этапе акцептации синтезируются 4-углеродные соединения, поэтому этот путь фотосинтеза назван С4. Особенности прохождения С4 пути позволяют растениям накапливать органические кислоты, образующиеся на первых этапах цикла, экономить воду и проводить процесс фотосинтеза в самое жаркое время.
Для этих этапов необходим углекислый газ, но суккуленты не могут получить его днем, поскольку в жару их устьица закрыты и открываются только ночью. А цикл Кальвина у этих растений может проходить днем, когда устьица растений закрыты.
Значение фотосинтеза для растений
В отличие от животных, способных к движению и поиску пищи, растения ведут неподвижный образ жизни. Получить сложные органические соединения сахара, необходимые для строительства их тканей, им неоткуда. Небольшое количество органики растения получают из почвы, но эти соединения они не могут использовать для своей жизнедеятельности в чистом виде.
Но этого питания недостаточно для их полноценного развития. Да и такой процесс охоты связан с большими затратами энергии, которую необходимо откуда-то получать. Вот почему растения приспособились синтезировать органические вещества в своих клетках.
Поэтому в тканях этих живых существ в ходе эволюции сформировался процесс фотосинтеза. Он играет в жизни растений решающую роль. Без него они не могли бы получить необходимые для их жизни органические вещества.
Для растений процесс фотосинтеза решает следующие задачи:
- Получение органики для строительства тканей организма и участия в химических процессах синтеза веществ метаболизма;
- Накопление органических веществ и их хранение;
- Использование накопленной органики для получения энергии путем расщепления.
Благодаря этому процессу растения стали основным источником органических веществ, составляющих основу любой пищевой цепи. Также поглощение углекислого газа и выделение кислорода в процессе фотосинтеза играет важную роль в решении многих экологических проблем.